ILLINOIS OBSERVING NANOSATELLITE (ION)

University of Illinois Urbana-Champaign

ILLINOIS TINY-SAT INITIATIVE (ITSI)

Ryan Kuester, C&DH Subsystem Lead rkuester@uiuc.edu

Dr. Gary Swenson, Professor / Advisor swenson1@uiuc.edu

OVERVIEW

How ION

- Educates and develops interest in space engineering
- Brings flight experience to the space technology development community
- Performs a focused earth science exploration mission

ION MISSION

- Education
 - Provide a multidisciplinary engineering experience
 - Give students familiarity with project management
 - Develop interest in space engineering

ION MISSION

- Technology
 - Primary
 - Space qualification of vacuum arc micro-thruster propulsion system for Alameda Applied Sciences Corporation
 - Space qualification of Tether Applications Inc. Small Integrated Datalogger (SID) single-board computer
 - Development of an active, 3-axis magnetic attitude control system
 - Secondary
 - Demonstration of on-board CMOS camera capabilities
- Science
 - Investigation of airglow layer of Earth's atmosphere through use of an on-board sensor [Photo-Multiplier Tube (PMT)]

Educational Mission Multidisciplinary design experience

- Involves three departments
 - Aeronautical and Astronautical Engineering
 - Electrical and Computer Engineering
 - Computer Science
- Learning
 - How to coordinate efforts amongst a large and diverse group
 - Communication across discipline lines
 - An appreciation for other engineers' ideas
 - Versatility and flexibility

Educational Mission Project Management

- Completely Student Led
 - Six subsystems with leads
 - Leads comprise management group
- Learning
 - Managing and working with people
 - An appreciation for management of large projects in general

Educational Mission Develop interest in space engineering

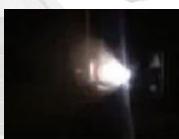
- Excitement of putting something into space
- Introduction with the challenges involved
- Contact with the space community

Technology Mission Space qualify VAµT

Pulsed Electric "Vacuum Arc micro-Thruster"

- Uses electrical energy to accelerate inert solid fuel (Aluminum)
- Pulsed operation allows various thrust and power
- Very low mass

Technology Mission Space qualify VAµT


- Thruster heads
 - Cylindrical or "BLT"
 - BLT design chosen due to higher reliability
 - Current design uses satellite frame for propellant in a selfconsuming fashion

Technology Mission Space qualify VAµT

- Utility
 - Attitude Control
 - Orbit Maintenance
 - Orbit Transfer

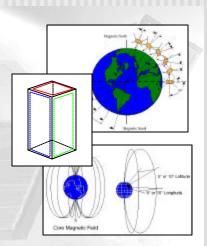
Technology Mission Space qualify VAµT

- Verification Experiments
 - Current Sensor
 - Sensor to detect flow of current to thruster head
 - Indicates if power is being supplied correctly
 - Attitude Determination
 - Measure any changes in attitude caused by use of propulsion system
 - Propellant Deposition Monitor
 - Ceramic wafer lightly coated with metal
 - Back-splash from thrust head accumulates on wafer
 - · Resistivity level monitored

Technology Mission Space qualify SID

- Small Intelligent Datalogger (SID) by Tether Applications used for flight computer
 - Features
 - Hitachi SH7045F 32-bit RISC microcontroller
 - Low power: 15 MHz at < 0.5 W
 - 1.2 MB RAM, 8 MB Data Storage

Technology Mission Space qualify SID

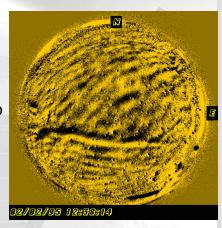

- On-board facilities
 - Low-grade gyros and accelerometers
 - · Confirmation of attitude information
 - Redundant alarm clocks
 - Keep time
 - Scheduling
 - Temperature sensor interface
 - Can measure temperatures in over 60 locations throughout the satellite
 - CMOS camera interface
 - Collect images from the PhotoBit PB-300 based camera

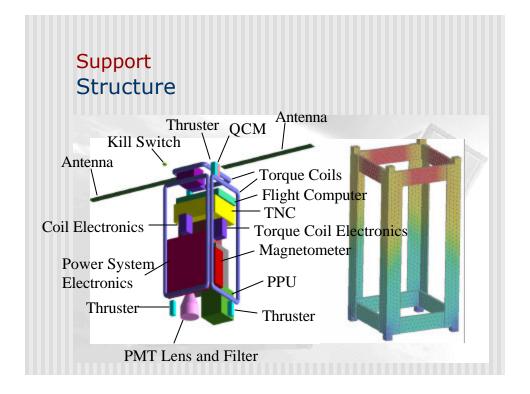
Technology Mission Space qualify SID

- Additional resources
 - 10-bit A/D, multiplexed many ways
 - Read solar array voltages, current sensors, etc.
 - Serial peripheral
 - Communicate with communication system
- SID Rad-hard feature
 - Overcurrent protection circuitry
 - Power cycles the computer upon unexpected current increase
- Software development
 - Mostly in C/C++
 - Using free and familiar GNU development tools

Technology Mission Develop 3-axis attitude control system

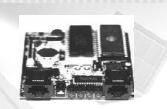
- Actuators
 - Free air torque coils
- Sensors
 - Primary
 - 3-Axis Magnetometer
 - Secondary
 - Rate Gyros
 - Accelerometers
 - Solar panels
- Software
 - Readings referenced against model of magnetosphere for attitude determination


Technology Mission Demonstrate CMOS camera



- Equipment
 - Photobit PB-300 Camera
 - SID camera interface
- Purpose
 - Additional tool for attitude determination
 - Pictures from our satellite will make for great PR

Science Mission Investigate Air Glow Layer


- Image Air Glow Layer at 760nm
 - Study wave structures
 - Unable to image from ground due to absorption
- Equipment
 - Photomultiplier tube using photon counting technique

Support Communications

- Modified COTS parts
- 2W @ ~437 MHz in amateur radio band
- 1200 bps AFSK packet (AX.25)
- Half duplex
- Expected 150 KB/day with one ground station
- Two monopoles phased 180 deg apart

Support Ground Station

- Amateur radio satellite ground station
- 440, 1296, and 2400 MHz capable
- Automation for optimal use of short pass times

Support

Power

- Emcore 26% efficient cells
- Panasonic Li-ion batteries
- Power use will be carefully scheduled
- Expect 7Wh/orbit from solar cells

Summary

- Education
 - Exposes budding engineers to space engineering
 - Project management experience
 - Interdisciplinary interaction
- Flight experience for space technology developers
 - Alameda Applied Sciences VAµT propulsion system
 - Tether Applications Small Integrated Datalogger
 - Many commercial parts
- Technology
 - 3-axis control
- Science
 - Airglow layer study